Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Laser-induced breakdown spectroscopy and related resonance spectroscopy for nuclear fuel cycle management and for decommissioning of "Fukushima Daiichi Nuclear Power Station"

Wakaida, Ikuo; Oba, Hironori; Miyabe, Masabumi; Akaoka, Katsuaki; Oba, Masaki; Tamura, Koji; Saeki, Morihisa

Kogaku, 48(1), p.13 - 20, 2019/01

By Laser Induced Breakdown Spectroscopy and by related resonance spectroscopy, elemental and isotope analysis of Uranium and Plutonium for nuclear fuel materials and in-situ remote analysis under strong radiation condition for melt downed nuclear fuel debris at damaged core in "Fukushima Daiichi Nuclear Power Station", are introduced and performed as one of the application in atomic energy research field.

Oral presentation

Challenging in laser based spectroscopy for nuclear engineering

Wakaida, Ikuo; Oba, Hironori; Akaoka, Katsuaki; Miyabe, Masabumi; Oba, Masaki; Ito, Chikara; Saeki, Morihisa; Kato, Masaaki

no journal, , 

In nuclear engineering, especially for the decommissioning of severe accident atomic power plant, development of quick, easy, non-contact, no-preparation, direct, remote, onsite and in-situ analysis of nuclear fuel materials which has very complex and large amount of optical emission lines will be indispensable. In these R&D, it may be important how we realize high sensitivity and high resolution spectroscopy and perform the identification of the specific element among a large number of emission spectra. Various kind of technique, such as Double-pulse LIBS and Microwave assisted LIBS for multiply the emission intensity, high resolution LIBS by ultra-high resolution spectrometer or Laser Ablation Resonance Absorption Spectroscopy for isotope analysis, Ultra-thin Liquid flow LIBS for liquid phase application and LIBS based on radiation resistant optical fiber for onsite/in-situ monitoring of melt downed nuclear fuel debris, will have been under investigation. Japan Atomic Energy Agency has opened the new research center "Collaborative Laboratories for Advanced Decommissioning Science", and laser based spectroscopy will be restarted as one of the basic projects.

Oral presentation

Laser remote analysis for MOX fuel and its application for rapid and in-situ analysis in decommissioning of "Fukushima Daiichi" Nuclear Power Station

Wakaida, Ikuo; Akaoka, Katsuaki; Miyabe, Masabumi; Oba, Hironori; Saeki, Morihisa; Oba, Masaki; Ito, Chikara; Kato, Masaaki

no journal, , 

Laser Induced Breakdown Spectroscopy (LIBS) for elemental analysis and Laser Ablation Resonance Absorption Spectroscopy (LARAS) for isotope analysis have been developed as an analytical technique for Low-decontaminated MOX fuel with fissionable Miner Actinide elements (MA) and as for one of the diagnostic tool of nuclear fuel debris and polluted materials in the decommissioning of the severe accident nuclear power station. Specialized glove box with auto and remote arraignment system for LIBS and LARAS was constructed, and the detection limit of Pu in MOX to be several 1000 ppm and some hyper fine structures of $$^{239}$$Pu were demonstrated. For the diagnostic tool in the decommissioning of damaged core, optical fiber based portable LIBS probe made by radiation resistant optical fiber is under construction, and just now, some specific spectra from the simulated sample of molten debris made by sintered oxide of Zr and U is successfully observed under water condition or strong radiation field.

3 (Records 1-3 displayed on this page)
  • 1